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Abstract 

 
Real-time health management on today's shuttle missions is both difficult and labor-intensive, 
posing a significant risk to crew safety and mission success. Next-generation space 
transportation vehicles are expected to incorporate several advanced information processing 
and information display technologies, transforming fault management into a cooperative venture 
between crews and intelligent systems.  Optimizing the potential of this crew-system partnership 
poses a considerable design challenge. The new technologies vastly increase the space of 
design options for knowledge engineering architectures, human-machine function allocation, 
and human-computer interfaces. We propose an integrated program of systems-level 
simulation, real-time human-in-the-loop scenario simulation, and human performance modeling 
to "prune" the design space and optimize the crew-systems concept. 

 
 

Introduction 
 
 
Designed over a quarter of a century ago, NASA's space transportation system is 

enormously expensive and operationally risky.  Each shuttle mission costs approximately half a 
billion dollars, and probabilistic risk assessments have estimated the probability of catastrophic 
failure at somewhere between 1 in 250 to 1 in 450 missions.  The combination of high cost and 
high risk constitute major barriers to broadening the scope of human activity in space.  Recently, 
NASA initiated several high profile programs to develop reusable launch vehicles (RLVs) that 
are dramatically cheaper and more reliable than the shuttles.  Nearer term, the Space Launch 
Initiative (SLI) is investing in component technologies to reduce the probability of a catastrophic 
vehicle failure in a second generation RLV to 10-4 per flight, at a launch cost of $1000 per 
pound.  Longer term, the third generation RLV program is targeting a vehicle with a catastrophic 
failure rate of only 10-6, with per-mission launch costs of one hundred dollars per pound.  
Achieving these ambitious levels of reliability and efficiency is a major challenge.  Human-
bearing spacecraft consist of a large number of highly complex engineering systems.  These 
include multiple propulsion systems, an electrical power generation and distribution system, a 
life support and environmental control system, a data processing system, and a 
communications system.  Regardless of the thoroughness of ground-based maintenance 
procedures, the complex and dynamic nature of these systems raises the distinct possibility of a 
system malfunction during flight. Together, the extreme environments in which spacecraft 
operate, the toxic and physically volatile nature of propellants and other systems components, 
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and the high level of system interdependence create an environment in which system 
malfunctions can escalate rapidly into mission-threatening or life-threatening situations. 

 
Shuttle crews deal with the danger of systems malfunctions by monitoring the health of the 

onboard systems via system summary displays and, in consultation with ground personnel, 
working systems malfunctions when they occur.  Astronaut training places a strong emphasis on 
learning the architecture of the onboard shuttle systems, including their interconnections, 
interdependencies, and failure modes.  This in-depth knowledge gives the crew the capability to 
troubleshoot malfunctions in real time.  Even with the training, however, real-time fault 
management (FM) is a difficult and time-consuming activity. To illustrate these difficulties, we 
will describe the sequence of events that would unfold if a leak occurred in the external tank 
(ET) on ascent (powered flight).   
 

To understand the effects of this leak, some details on the structure of the ET are 
necessary. The ET consists primarily of a forward tank containing liquid oxygen (LO2) and an 
aft tank containing liquid hydrogen (LH2).  These propellants are fed to the three space shuttle 
main engines (SSME's) for combustion.  As the supply of LH2 is consumed, a cavity is created 
in the aft tank that must be pressurized to keep the flow within nominal levels.  Cavity (ullage) 
pressure is maintained by a return flow of gaseous H2 (GH2) from the SSMEs.  Each engine's 
GH2 feedline has its own flow control valve (FCV) and its own dedicated ullage pressure sensor 
in the LH2 tank.  Normally, ullage pressure is controlled automatically: when the sensed 
pressure falls below a designated lower value, the corresponding FCV valve is opened; when 
the value returns to normal range, the FCV is closed.  Note that this logic works on the three 
flow control valves (one for each SSME feed) independently, so the actual valve configuration is 
dynamic over time. 

 
The primary symptom of a leak in the aft tank is abnormally low ullage pressure.  Each 

sensor's current pressure reading is displayed to the crew on a systems summary display called 
the BFS SYS SUM 1 display.  If any of the three sensors returns a value below the automatic 
set point (consistent with a leak), a "down" arrow appears beside the low reading on the display, 
and a class 3 alarm is issued by the shuttle's caution and warning system.  The alert consists in 
part of a short tone and the appearance of a fault message on both the BFS GNC SYS Sum 1 
display and on a dedicated fault message summary display.  Therefore, the crewmembers’ first 
task, after being alerted to the presence of a malfunction by the Class 3 alarm, is to read the 
fault message.  In this particular case the message is a rather cryptic "MPS LH2 ULL", 
indicating a low or high ullage pressure condition in the aft tank. 

 
Low ullage pressure is a potentially dangerous situation; it can lead to cavitation in the fuel 

turbopumps and uncontained SSME damage. The goal for the crew, then, is to execute 
reconfiguration procedures as quickly as possible to restore ullage pressure to its nominal 
range. On ascent, malfunction procedures are located in an ascent/entry systems procedures 
(AESP) data file, one of several paper flight data files carried onboard the orbiter. The "low 
ullage pressure" section in the AESP contains the following instructions: 

 
" if 2(3) Ps < 21.6 or > 34.5; 

MPS LH2 ULL PRESS - OP 
When all Ps > 34.5: 

MPS LH2 ULL PRESS - AUTO" 
 
The first instruction is significant.  It tells the crewmember that before effecting any 

reconfiguration, he or she must first check the BFS SYS SUMM 1 display to confirm that at least 
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two of the three sensed values are showing off-nominal readings. This cross-check is necessary 
because the caution and warning system cannot distinguish between real faults and off-nominal 
readings due to failed sensors.  If only one of the three readings is low, the problem is likely a 
failed sensor rather than a real malfunction.      

  
Once the malfunction is confirmed, the crewmember moves on to (in this case) 

reconfigure the affected system to optimize existing capabilities. As we see from the second line 
of the AESP entry, the appropriate procedure is to toggle the LH2 ULL PRESS switch (located 
on panel R2) from  "Auto" (the nominal setting) to "OP" (for open).  This switch throw opens the 
flow control valves from all three main engines simultaneously, maximizing the flow of GH2 into 
the aft tank.  Then, once the switch has been toggled, the crewmember is told to monitor the 
ullage pressure readings on the BFS SYSS SUM 1 display to confirm that they are returning to 
the nominal range. Once this is confirmed, the final instruction is to toggle the LH2 ULL PRESS 
switch back to "AUTO".  

 
The ULL PRESS example illustrates several generic difficulties with FM on the shuttle.  

Malfunction confirmation (the check that at least two of three sensors are showing off-nominal 
values, in this case) is a standard requirement that can be very demanding.  Malfunction effects 
often propagate both within and between systems through interconnections and 
interdependencies.  A second route for between-systems propagation is simple physical 
proximity between failed system components.  Thus, malfunctions are frequently accompanied 
by a cascade of alarms and fault messages.  When this occurs, the crew and/or MCC personnel 
must make a "root-cause" fault determination, which may include resetting parameter values to 
determine if the malfunction re-occurs in a timely manner, checking for related systems 
malfunctions, and performing inventories of failed equipment. 

 
Inefficiencies in the fault management process, particularly those that lengthen the time 

course of the process, pose the biggest danger during ascent and entry.  Faults in the main 
propulsion system, in particular, have short time frames before they constitute a hazard, putting 
a premium on executing the appropriate procedures as quickly as possible.  Furthermore, in 
laboratory studies, human operators of complex physical systems exhibit a stubborn 
performance limitation known as cognitive lockup (Moray & Rotenberg, 1989; Moray, Inagaki, & 
Itoh, 2000).  Briefly, when a system malfunction occurs in a high-workload environment, 
operators tend to focus exclusively on the fault management activities tied directly to that 
malfunction; they show very limited ability to time-share those activities with any concurrent 
information processing requirements.  On ascent, shuttle crews have a well-defined set of 
display monitoring activities to maintain situation awareness of the vehicle's navigation state 
and SSME functioning. Cognitive lockup suggests that these ongoing activities will be omitted 
(or curtailed) during active fault management (Moray, et al.).  Thus, we would expect the crews' 
situation awareness of overall vehicle state to degrade during a fault management exercise, and 
the longer the process takes, the more severe the degradation should become. Cognitive lockup 
is also likely to degrade the crew's ability to manage multiple fault scenarios when fault 
management activities overlap.  To the extent that the current inefficiencies in the fault 
management process extend the time course of the process, they increase the probability of 
overlap.  

 
Fault management on next-generation vehicles 

 
Stringent safety and reliability requirements for next-generation spacecraft mandate a 

dramatic improvement in the fault management process compared to the shuttle.  Fortunately, 
designers of the new vehicles have almost thirty years of advances in the fields of computer 



4 

   

science and information technology to draw on.  At the sensor level, integrated vehicle health 
management (IVHM) programs have developed (or are developing) a new generation of 
sensors that are more reliable, and capable of sensing more forms of data (e.g., plume 
composition, vibration) than the sensors on the shuttle.  These "smart" sensors promise to 
provide a much more complete and reliable picture of real-time systems functioning than on the 
shuttles.  Second, artificial intelligence researchers have developed sophisticated inference 
engines that directly support real-time vehicle health management.  For example, model-based 
reasoning agents (Patterson-Hine, Hindson, Sanderfer, Deb, & Domagala, 2001) take data 
feeds from sensors, compare the data to a structured model of subsystem components, their 
functions, and interconnections, and make inferences about system state. Nominal data 
patterns are consistent with a nominal configuration of all subsystem components.  If a data 
pattern goes off-nominal, the reasoning agent infers the most likely state change that would 
produce the off-nominal pattern, such as a valve failed open or failed closed.  From there, 
intelligent inferences can be made as to the appropriate reconfiguration procedure. 

 
    NASA's next generation vehicle development programs are targeting technologies to 

further increase the power and reliability of the inference engines.  One of the most promising 
areas is in knowledge fusion, whereby model-based reasoning is combined with other forms of 
artificial reasoning (rule-based, neural network pattern recognizers, etc.) to enhance the 
accuracy and reliability of nominal and off-nominal state determinations.  Moving beyond the 
systems level of analysis, another focus is on developing intelligent crew assistants.   Some of 
the capabilities discussed for these flexible agents are performing root-cause determinations for 
faults that have intra-system impacts, analyzing impacts of malfunctions on vehicle functioning 
and mission goals, and performing real-time mission replanning. 

   
Incorporating these advanced information technologies creates two critical design issues.  

One is to define an optimal knowledge engineering architecture.  The availability of single-chip 
control and communication processors equipped with real-time operating systems has made it 
possible to embed powerful data processing algorithms all the way down to the sensor level.  
Higher level controllers will reside on machines with vast computational power.  The challenge 
is how to best distribute information-processing and decision-making capabilities between the 
various levels of the hierarchy. 

 
One architectural candidate is a three-tiered pyramid structure, with controllers at the 

subsystem (sensor) level, the system level, and the vehicle level.  Each level would integrate 
information from relevant lower levels and exploit an increasingly broad knowledge base and 
decision-making capability.  For example, returning to our low ullage pressure case, the three 
sensors in the LH2 tank might feed their output to a local controller that checks and compares 
the data values.  One quite useful function for the controller would be to implement a command 
voting scheme similar to the scheme employed by the SSME’s digital computer units.  If two of 
the three sensor outputs are identical, and the third is anomalous, the third sensor is declared 
failed, and its data discarded.  In this way, off-nominal annunciations based on a single sensor 
value would be suppressed.  

 
The second or systems-level controller might process and integrate information from the 

subsystem controllers.  Model-based reasoning agents are obvious candidates for this level, as 
they are designed to integrate sensor data from component subsystems to make system-wide 
state determinations.  And finally, a single vehicle level controller would essentially function as 
the intelligent crew assistant mentioned earlier.  
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The second major design issue concerns the role of the human in this brave new world of 
distributed intelligent systems.  At first glance, the issue might seem moot.   Several model-
based reasoning agents have demonstrated an ability to perform fault detection, isolation, and 
recovery (FDIR) activities autonomously. Thus, at least in principle, the labor-intensive fault 
management activities required of the crew and mission control experts on the shuttle today 
could be performed by machine intelligence.  However, automated systems are never going to 
achieve 100% reliability.  They can fail outright if their hardware platform is damaged, and as 
memory chips shrink to ever-smaller sizes, space-based software become increasingly 
vulnerable to single event upsets (individual bit flips) from contact with charged particles.  Add 
the fact that automated reasoning agents are unlikely to achieve 100% accurate state 
assessments in all cases, and it is clear that humans must retain a FM role. 

 
 Subject matter experts who have studied the impact of automation in transport aircraft are 

strongly opposed to the concept of full automation (Billings, 1997).  As applied to fault 
management, giving full responsibility to the machine would change the crew's role from an 
active participant in the process to an (at best) passive monitor of the process.  This change in 
crew role carries several human factors risks. If the crew is not actively involved in decision-
making, they can become overreliant on the automation, and fail to perform the ongoing 
information sampling activities needed to maintain a high level of situation awareness 
concerning system state and system functioning, knowledge that they would need in case the 
automation failed.  A second potential problem with automating all FM activities is mode 
confusion, a lack of real-time understanding of what the automation is doing and/or why it is 
doing it.  For example, suppose an automated fault management system diagnosed a 
malfunction and started executing the relevant procedures, but did not keep the crew well 
informed of what it was doing.  Serious problems could arise if the crew made a malfunction 
diagnosis that disagreed with the automated diagnosis, and attempted a system reconfiguration 
that cancelled or reversed the automated action. 
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Figure 1.  Possible levels of automation for fault management
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Billings (1997) argued that the best way to retire these risks is to adopt a human-centered 
approach to human-machine function allocation.  Ideally, automation and human would form a 
cooperative team with a functional allocation that keeps the human firmly in the loop, while still 
maximizing the capabilities of the intelligent systems.  A useful framework within which to 
explore this concept is a FM version of the standard Sheridan-Verplaank (S-V) levels of 
automation (LOA) scale.   Shown in Figure 1, the scale defines several forms of human-
machine function allocation.  At the bottom of the scale, corresponding to the highest level of 
human involvement, the machine annunciates a fault and leaves all other FM responsibilities to 
the human.  This is roughly the situation on the shuttles today.  Intermediate levels assign most 
of the fault detection and fault diagnostic responsibilities to the machine, together with the ability 
to provide the appropriate list of procedures to the human in electronic form.  The human still 
performs the reconfiguration procedures.  At the higher levels, automation assumes all 
responsibilities, including reconfiguration.  The human still has an important function, however.  
In S-V level IV, the machine does not perform reconfiguration procedures until the human gives 
permission; in level V, the machine carries out the procedures unless the human vetoes the 
actions within a certain period of time.  Finally, the highest LOA gives the machine control over 
all FM activities, informing the human only after procedures are complete. 

 
Which LOA is the optimal choice to satisfy human-centered and system-centered 

requirements?  The short answer is that no single level is appropriate for all conditions.  Figure 
2 plots a hypothetical LOA curve as a function of two critical variables: crew workload (which is 
highly correlated with flight phase), and time criticality of the malfunction.  The nonlinear shape 
of the LOA curve points to the relative importance of time criticality to the LOA determination.  
The hashed rectangle overlaying the top right portion of the function is a particularly important 
section.  It represents the set of highly time-critical malfunctions that evolve too rapidly for 
humans to play a useful role.  These faults obviously mandate S-V level VI, the highest 
possible.  Below this boundary, the gradual reduction in the slope of the curve reflects the 
increasing influence of crew workload as more time is available.  We noted earlier that if a 
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Figure 2. Adaptive automation as a function of time criticality and workload
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crewmember is working a fault management problem, he or she might postpone work on a 
second malfunction until the first is completed.  Thus, the same fault might be assigned a higher 
LOA if it occurs second in a two-failure deep scenario, compared to when it occurs first.  An 
alternative design strategy might be to assign a higher LOA to first failures, thereby saving the 
human to devote his or her full attention to a second fault if, in general, later faults tend to be 
more time-critical than earlier faults. 
 

(Home) ARSPCS

MM 102          MET 00:00:00:10
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A B C D E F
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SWWS

Out T 30

ICH
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Figure 3.  Freon loop under off- nominal conditions prior to automated action. 
 
Most faults fall into an intermediate range of time criticality and operator workload, where the 

most appropriate LOA is probably one of the intermediate cases, where the automation 
diagnoses and verifies the malfunction and performs the appropriate procedures, but the human 
has "right-of-refusal" control over the computer's actions.  There is evidence (Boy, 1988) that 
crew-systems might perform particularly well if the automation provided an initial diagnosis, and 
carried out the associated procedures, while the human engaged in "backward chaining" to 
verify the computer's diagnosis against the actual fault symptoms.  

 
To flesh out the user interface to support this form of human/machine functioning, a new 

generation of systems summary displays will have to be designed.   Similar to those on the MD-
11 today, these displays will likely integrate the traditional concept of a systems summary 
display with the procedural knowledge contained in the flight data files.  The goal would be a 
display that explicitly depicts the automated actions in a form that is inspectable, predictable and 
isomorphic with the operator's mental model of the affected system (Weiner, 1989).   

 
 One display concept that holds considerable promise for this area is the animated mimic 

display (Bennett & Malek, 2000), a graphical representation of a complex system that provides a 
visual depiction of the dynamics of system functioning. For example, suppose an intelligent fault 
management agent was developed for the shuttle, and accurately diagnosed an "Evap out T  
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Figure 4. Freon loop with automation reconfiguring the flow  proportion valve setting. 

 
low" problem in the environmental control and life support system.  This problem occurs in the 
freon loop when freon temperature drops below 32 degrees F after being cooled by the flash 
evaporator subsystem. "Evap out T low" commands a sequence of procedures that must be 
worked in a matter of seconds to prevent the abnormally cold freon from freezing the water in 
the freon/water heat exchanger, located downstream of the flash evaporator. A display concept 
for the initial procedure is illustrated in Figures 3 and 4, which provide a "zoomed-in" view of the 
portion of the freon loop containing the "evap out T" sensor area and salient subsystems 
downstream.  One of these is a flow proportion valve that controls the amount of freon flowing to 
the Water/Freon Interchanger (ICH) and the Payload Heat Exchanger (labeled PL).  Since the 
immediate danger is that water will freeze in the ICH, the first procedure is to switch the flow 
proportion valve from ICH to PL, which diverts most of the flow away from the interchanger.  In 
Figure 3, the Evap out T low condition has been identified (cf. the message in lower right), but 
no action has yet been taken by the automation.  

 
In Figure 4, the freon/water loop interchanger and the flow proportion valve are highlighted 

in grey.  The effectors appear on the display as virtual switches, and "flip" in real time to the PL 
position.  As the actual flow proportion shifts in response to the reconfiguration, the size of the 
arrow illustrating real time flow volume from the flow proportion valve to the payload HX 
increases, while the arrow illustrating flow to the ICH decreases.  Highlighting of this sort would 
track the actions of the automation precisely, giving the crew salient perceptual feedback as to 
what procedure was being worked, what actions were being taken, and how these actions were 
impacting real-time system functioning.  A further attractive design feature would be to color 
code or otherwise identify the subsystem that was next scheduled for reconfiguration. 

 
Pruning the design space with modeling and simulation 
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The various aspects of fault management discussed so far highlight the design challenge 
that accompanies the integration of advanced intelligent systems into the cockpit.  Not only is 
the knowledge engineering design space itself quite extensive, but as we have seen, intelligent 
systems generate several options for human/machine functional allocation (Figure 1), each of 
which may require a customized user interface.  The design space problem worsens when we 
consider that the spaces are not independent.  When a fault occurs, it will be up to the intelligent 
system to evaluate crew workload, fault criticality and other relevant aspects of the real-time 
environment, and select an appropriate LOA.  This is a critical decision: for example, next-
generation vehicles are likely to be equipped with crew-escape modules designed to eject in the 
event of a catastrophic vehicle malfunction.  The go/no go ejection decision is going to take 
place under extreme time constraints, and it will be up to the intelligent system to determine 
whether to eject automatically, or to allow the crew some role in the decision making process.  
Lives will depend on this decision. Less drastically, from the crew's perspective, intelligent 
systems will have to function as integrated signal detection devices, making decisions as to 
when an off-nominal condition is occurring, whether to initiate a caution and warning 
annunciation, and what level of criticality to assign to the alert. 
  

These interconnections between the crew, the environment, and intelligent systems inflates 
the design space in what amounts to a combinatorial explosion.  We must therefore find some 
way to prune this design space and identify the optimal design options.  We propose an 
integrated program of modeling and simulation involving virtual vehicle systems models, human-
in-the-loop simulations, and cognitive modeling.  A brief description of this concept follows. 

  
Virtual systems modeling. The nascent field of virtual engineering could be of great 

assistance to the crew-systems design process.  The basic idea is to use high-speed numerical 
computing techniques, such as those used today to model the impact of high-speed collisions 
on automobile structures, to develop systems models capable of simulating dynamic aspects of 
systems functioning (e.g., flow rates, pressures, vibrations, thermodynamics) in real time.  By 
incorporating virtual sensors into these models, real-time data feeds could be generated and 
provided to system-state inference engines.  Assuming the models can incorporate the effects 
of systems malfunctions, Monte-Carlo style simulations could be run to train the inference 
engines to recognize (classify) a wide variety of system states.  Measures of model 
performance could then be used to answer important IVHM questions, such as how many 
sensors to build into a system, and where they should be located.  

 
 
Human-in-the-loop simulation.  Real-time systems models could also form the backbone of 

a high-fidelity testing and evaluation simulation facility. Malfunction scenarios could be 
implemented that provide integrated tests of candidate knowledge engineering architectures, 
user interfaces, and human-machine function allocation schemes.  To illustrate the need for this 
approach, earlier we noted some compelling reasons why intelligent systems should select the 
LOA on a malfunction-by-malfunction basis (adjustable automation).  However, an AI system 
capable of exercising this level of control is virtually guaranteed to produce occasional emergent 
behaviors not anticipated by the designers, and that will come as a surprise to the humans.  
Humans do not respond well to unpredictable automation, and by measuring their response to 
these unexpected behaviors, we can determine whether the behavior is unacceptable, requiring 
modifications to the knowledge architecture. 

   
A further justification for human-in-the-loop simulation is to determine the boundary 

conditions for the highest LOA (VI) determinations.  We have already noted the need for a 
precise judgment of the temporal boundary that distinguishes malfunctions that are too time 
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critical to permit human involvement in the FM process from malfunctions that are not.  This 
assessment cannot be made in the abstract.  It will depend on the specifics of the user interface 
design, as the interface influences how quickly the human can recognize the fault and consider 
its impact. The assessment will also depend on the prognostic capabilities of the intelligent 
systems, which will determine how much lead-time exists between fault detection and 
catastrophic failure.  Integrated tests of human/machine functioning can provide an empirical 
resolution of this issue. 

  
Cognitive modeling.  A third form of modeling that could contribute to pruning the space of 

crew-system design options is human cognitive modeling. Cognitive models take a particular 
task environment (such as fault management) and carefully decompose the task into its 
constituent elements.  Based on their knowledge of human perceptual, cognitive, and motor 
systems functioning, the models make assessments of the time required to complete each 
element.  Applied to the crew-systems realm, cognitive models have the potential to provide 
accurate assessments of the time course of human task management activities, including 
information acquisition, reasoning, and system reconfiguration operations.  Human-in-the-loop 
simulations are expensive and time consuming, and only a small subset of the parameter space 
can be examined in such studies.  Cognitive models may allow us to make quantitative 
assessments of human/machine performance over a much wider range of design options than 
human-in-the-loop simulation alone. 
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